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Phase transitions at the fluid-solid interface are studied using an adsorption model
consisting of a fluid of hard spheres in contact with a planar wall which contains a lattice of

sticky adsorption sites. The model is equivalent to a lattice gas with n-body interactions that

are related to the n-body correlation functions of the fluid.

I. INTRODUCTION

The present paper is an overview of some of the results we have obtained in
the past three years using a statistical mechanical model to study phase
transitions which occur at the fluid-solid interface. 1-3 The model, 4 ,5 as
discussed in Sec. II, consists of a dense fluid of hard spheres of diameter a
near a planar wall that contains a triangular lattice of sticky sites. This three-
dimensional model is equivalent to a two-dimensional lattice gas with many-
body interactions that are related to the many-body contact correlation
functions of the fluid.

The nature of the phases which occur at the fluid-solid interface in this
model depends on the fluid density, the strength of the sticky attraction at the
lattice sites, and also on the ratio of the hard sphere diameter to the lattice
spacing d. If a slightly exceeds d, if the pair correlation functions are assumed
to be unity at distances exceeding d, and if many-body correlation functions are
approximated using the Kirkwood superposition approximation, 6 the
adsorption model is then equivalent to the hard-hexagon lattice gas solved by
Baxter.7 The isotherms for this case of the adsorption model, which undergoes
an order-disorder phase transition, can be calculated using some exact



expressions obtained by Joyce 8 for the hard-hexagon model. These results are
presented in Sec. III along with some simplified expressions for the isotherms
which we obtained by exploiting a symmetry present in Joyce's original
expressions.

If the sphere diameter a is much smaller than the lattice spacing d, so that
the correlation functions are approximately unity at distances as large as d,
then the model has no phase transition and the Langmuir adsorption isotherm
results. 2

We have treated in some detail the special case for which a = d. 1 -3 Simple,
but accurate analytical expressions are known for the contact pair correlation
function as a function of the fluid density. 9 -11 Assuming the pair correlation
functions decay to approximately unity at distances approaching the second
neighbor lattice spacing, and using the Kirkwood superposition approxi-
mation, the adsorption model is equivalent to a lattice gas with first-neighbor
pairwise interactions.1 ,5 The coexistence surface for the first-order phase
separation which occurs in this lattice gas is known exactly. 12 Using several
exactly known coefficients in the series expansion of the properties of the lattice
gas, 13 we obtained accurate adsorption isotherms which are a generalization of
Langmuir's isotherm.2 These results are presented in Sec. IV.

Recent calculations by Attard and Stell indicate that the Kirkwood super-
position approximation is not accurate for a triangle of hard spheres all in
mutual contact. 14 ,1 5 Since such a configuration is present in the adsorption
model if a = d, we have included the effects of three-body interactions in this
case of the model. The critical point of the equivalent lattice gas, which
contains pair and triplet interactions, has been approximated 1 6 using the
interface method of MUller-Hartmann and Zittarz. 17 In addition, we dis-
covered a simple but accurate analytical approximation to the three-body
correlation function for three spheres in mutual contact. 3 Together these
results yielded an estimate of the fluid density at the critical point of the two-
phase coexistence surface for the adsorption model 3 which is significantly
higher than that predicted using only the contact pair correlation function and
the Kirkwood superposition approximation. 1 These results are presented in
Sec. V.

II. THE MODEL

We consider a model for adsorption in which a fluid of N hard spheres of
diameter a in a volume V interacts with a hard wall, located at z = -a/2, con-
taining a lattice A of sticky adsorption sites.1 ,4,5 The partition function for the
system is



Z =_N! f e-PH drN (1)

where f3 - (kT)-1 . The Hamiltonian can be written as

N
H= HO + I US(ri), (2)

i=M

where H 0 is the Hamiltonian for the system in the absence of the sticky sites
(the smooth wall problem), and US(ri) is the potential for the interaction of a

hard sphere i at ri with the lattice of sticky sites JRs). This sticky potential can

be written as

e-PUO(ri)=1 + , R (ri-Rs), (3)
RSl=

where 8 is the Dirac delta function. The stickiness parameter X has units of

volume and, except for a constant factor, is the fugacity of adsorption of a hard
sphere onto a sticky site.

Performing the integrations in Eq. (1) to remove the delta functions and
rearranging terms yields

Z/Zo = Y , 2 pO,(R1 ....,Rn) (4)
n=0 n! (R 1)CA

where

pOK(r,...,rn)= [Zo(N - n)!1-fe- HO drn+l ...drN (5)

=g0(rl,...,r,) pI0(ri)•

Here, Z0 , gO(rj,...,rn), and p°(ri) are respectively the partition function, an n-
body correlation function, and the single particle density for the smooth wall
problem.

Defining the potential of mean force U(RI,...,R) as

gO(RI,...,R) = e-PU(R,....Rn) (6)

yields

N [0 p0 n U( .. R
Z/Zo = E i( Z e-P R ,,. (7)

n=o n! {Ri}CA



where p°(0) is the single particle density at the contact plane (z = 0). Changing
from a sum over the positions of labelled hard spheres on A to a sum over
lattice sites of A, Eq. (7) yields

= Z/Z 0 = I [o0(0)]1ti e-PU({ti)) (8)

where ti is the occupation number of site i in a given configuration {ti).

The adsorption model is thus equivalent to a two-dimensional lattice gas
with a grand canonical partition function B, a many-body interaction energy
U({ti)), and a chemical potential gI given as

eN = X P°0(o). (9)

The fraction of sites of A which are occupied by spheres is given byl,5

0 = X In (10)
1A1~

III. ADSORPTION OF LARGE SPHERES

If the hard sphere diameter a slightly exceeds the lattice spacing d, then
occupancy of two first-neighbor sites is excluded, and hence U((ti)) is infinite
for all such excluded configurations. If U({ti)) is assumed to be zero for all
allowed configurations, this is equivalent to assuming the pair correlation
function is unity at distances greater than or equal to the second-neighbor
separation, f3 d, and that the n-body correlation functions are given by the
Kirkwood superposition approximation 6

gORI..,n) = 1l g9(Ri,Rj) .(1

(ij)

Within the above approximations, the adsorption model is equivalent to the
hard hexagon lattice gas, which has been solved exactly by Baxter.7 The
isotherms for the adsorption model can then be computed using exact
expressions for Xp°(0) as a function of 0 which were obtained by Joyce8 for the
equivalent hard hexagon lattice gas. We noticed that these expressions have a
more compact form when Xp°(0) is written as a function of the variable

0=0(1-0) . (12)

The adsorption model undergoes an order-disorder transition at the fluid-solid
interface at a critical coverage Oc = (5 - f5-)/10 = 0.2764, which corresponds to
the value oc = 1/5.



The exact expression for Xp°(O) as a function of 0 in the disordered region,

S<• 115, can be written as

XP(O) =Q[Qo2 Qi112 + - Qo(2Q 3 + 2Q2Qll2)L] (13)

where

Q = (806)-i[I - 50 + 502 + (1 - 40)V2(I - 30 + 02)]

Qo= 1-50

Q, = (1 - OX1 - 50) (14)

Q2 = (1 - 40)12(1 - 110 + 3302 _ 11ý3)

Q3 = 1 _ 163 + 9002 _ 19803 + 1194-_ 1045

.The expression in the ordered region, 4 Ž 115, is given as

pO(= -2+90-60 2- (2 - 50)(1 - 4) L12
1 - 120+33#2 +((515)3/2)(9_)- (15)

1/3 -

0

0 pa 3  
1.0

Figure I. An isotherm with )0o3 = 10 for the case d < a < f3- d.



At the transition, [p°(0)]c = (11 + 5f5-)/2 = 11.09....

The contact single particle density as approximated by the Percus-Yevick
(PY) theory is 9,10

pO(O);3 = 6r(1 + 2rI) (16)
(1 _ T11)2

where ii = 0r/6)pa 3 is the packing fraction. The maximum density possible for
hard spheres is pa 3 - F2, which occurs at closest-packing.

Isotherms in the 0 versus pa 3 plane can be easily calculated using Eqs.
(13) - (16). An isotherm with X/&3 = 10 is illustrated in Fig. 1.1

IV. ADSORPTION OF SMALL SPHERES

If the lattice spacing d greatly exceeds the hard sphere diameter a, then
the correlation functions can all be assumed to be unity for distances as large
as d. This is equivalent to assuming U((ti}) in Eq. (6) is zero for all allowed
configurations, and Eq. (8) becomes 2

--- = [1 +P °(o)]AI (17)

Equations (10) and (17) then yield the Langmuir adsorption isotherm

8= XP°() (18)
1 + ?pO(0)

The system in this case has no lateral interactions and does not undergo a
phase transition.

For the case in which the lattice spacing is identical to or slightly exceeds
the hard sphere diameter, if the pair correlation function is approximated to be
unity for distances as large as the second-neighbor lattice spacing, and if the n-
body correlation functions are approximated using the Kirkwood superposition
approximation of Eq. (11), these approximations are equivalent to assuming
that

U(ty) = W Y. tjtj ,(19)
nn

where W is the pair potential of mean force at the first-neighbor lattice spacing,
i.e.,



e-•W = g°(d) (20)

The equivalent lattice gas thus has a partition function given by Eq. (8) and
Eq. (19). A first-order phase transition occurs in this lattice gas on the
triangular lattice if 1

Xp?(0) = [g°(d)] 3 (21)

The two-phase coexistence surface for this transition has been calculated
exactly and is given by 12

e =1(1± (1 - 16g°(d)[g°(d) - 1- 3[g°(d) + 3]- 1) /8) (22)

The parameters at the critical point of this transition, which occurs at 8 = 1/2,
are given from Eq. (21) and Eq. (22) as1

[g2(d)]c = 3

[Xp°(O)]c = 1127. (23)

For the special case a = d, we let g2 = g0(a), and the PY approximation to
the contact pair correlation function 9 ,1 0

1.0

e

0 110

Figure 2. The coexistence curve for the case o = d. The two coexisting phases on the isotherm

with X,/a = 0.01 are marked with dots.



92 = 1+11/2 (24)
(1 -7,)2

can be used with Eq. (22) to plot the two-phase coexistence surface in the (0, p0 3 )

plane. For an appropriate fixed value of X/a 3 , the density at which a phase
transition occurs on this isotherm can be calculated using Eqs. (16), (21), and
(24).1 For example, on the isotherm for which X/a 3 = 0.01, the two-phase
coexistence occurs at paý = 0.727 with e = 0.886 and 8 = 0.114. These two transi-

tion points are pictured on the two-phase coexistence curve in Fig. 2.

Although the isotherms for this case have not been calculated exactly (this

would be equivalent to solving the Ising model in non-zero field), many exact

coefficients in series approximations to 0 have been obtained. Letting y =

[)p°(0)g32-1, at low densities ( y > 1)13

= ry-rC(g2-) , (25)
r=l1

and at high densities (y < 1)

cc

1 - Eh(y) = I r yr Cr(g2-1) , (26)
r=1

where cr is a polynomial in g2 - 1 . The hole-particle symmetry present in the
lattice gas with first-neighbor interactions is exhibited in the relationship,
where y < 1,

01(y- 1) = 1 - Oh(y) . (27)

Equation (21) implies the first ordcr transition occurs at y = 1.

We have constructed approximants 2 which are a natural extension of

Langmuir's isotherm

e$y) = P(y- 1)

1 + P(y-1)

1 P(y) (28)
1 -0h() =1 + P(y)'

where P(y-1) can be written as

mp(y -1)= E prg)[X.p0(0)]r. (29)

r= 1

The coefficients pr(g2 ) are polynomials in g2 which are determined by requiring



that the coefficients in the series expansions of Eq. (28) match the first m coeffi-
cients of Eq. (25) and Eq. (26). Written in terms of f = 92 - 1, the polynomials
pr(g2), r < 8, for the triangular lattice were calculated to be

P= 1

P2 = 6f

P3 = -6f+ 45f 2 + 6f 3

P4 = 6f-120f 2 + 344f 3 + 108f 4 + 12f 5

P5 = -6f+ 225f 2 - 1680f 3 + 2478f 4 + 1374f`5 + 315f 6 + 30f 7

P6 = 6f- 360f 2 + 4920f 3 - 19788f 4 + 15474f`5 + 14640f 6 + 5298f 7

+ 1008f8 + 84f 9

P7 = - 6f + 525f 2 - 11270f 3 + 82803f 4 - 205830f 5 + 66926f 6 + 135396f 7

+ 71274f 8 + 20776f 9 + 3507f10 + 294f11 + 7f'1

P8 = 6f- 720f 2 + 22224f 3 - 254568f4 + 1179828f 5 - 1905384f 6

- 101754f 7 + 1068366f 8 + 817260f 9 + 330282f"10 + 83868f 11

+ 13374f12 + 1224f 13 + 48f 14 . (30)

Using 01(y) and Oh(y) of Eq. (28), together with a switching function 1(y)
which vanishes at y = 0 and becomes unity as y -4 -, a continuous
approximation to 0 which is accurate both at high and low fluid densities can
be constructed as 2

0(y) = Ot(y)r(y) + 0h(y)[1 -Tl(y)] (31)

Since 81(y) and 8h(Y) have the symmetry of Eq. (27), then if r7(y) satisfies rl(y- 1 )
= 1 - TI(y), the approximation to 0 given by Eq. (31) also satisfies 0(y- 1) = 1 - 0(y).
A possible choice for the switching function is

ri(y) =11 + erf[s(y - y- 1 )] , (32)

where s is a measure of the sharpness of the change between the two limiting
values of rl(y).

V. EFFECTS OF THREE-BODY CORRELATIONS

Using pair correlations only, we can estimate the fluid density at the
critical point of the first-order transition for the case a = d by combining the



condition (g 2 )c = 3 with the PY contact pair correlation function of Eq. (24). This
yields the estimate1

pC03 = 13 - 73 = 0.7092 . (33)
2n

If the more accurate Carnahan-Starling (CS) pair correlation function1 0 ,1 1

92 = 1 n2(34)
(I _ 71)3

is used for the calculation, the resulting estimate of this fluid density, pa3 =

0.6678, is slightly lower than that given by the PY correlation function.

A recent calculation by Attard and Stell15 using the Percus-Yevick 3 (PY3)
theory,18 which includes three-body correlations, indicates that the Kirkwood
superposition approximation of Eq. (11) is not accurate for the triplet
correlation function of three spheres in mutual contact, but it is accurate for
other possible configurations of three spheres on the triangle lattice. 3

An improved estimate of U({ti}) is then given as 3

U(t}) = W 1n titj + W3 Y titjtk (35)

nnl Aij

where the second sum is over all triangles of nearest neighbor sites on the
lattice. From Eq. (6) and Eq. (35), we can identify W as the pair potential of
mean force and W3 + 3W as the potential of mean force for three spheres in
mutual contact.

This is equivalent to the superposition approximation 3

g0(R1"".Rn) = n-I g2 H g3 /g3, (36)
nn A

where g is the triplet correlation function for three spheres in mutual contact,

92 = e-OV, and g3 /g9 = e-PW3.

Within this triplet correlation approximation, the model is equivalent to a
lattice gas with pairwise interactions, W, and three-body interactions, W3.3

Using the interface method of Miiller-Hartmann and Zittarz, 1 7 the critical
point of the coexistence surface in the la ttice gas is predicted to satisfy, 16 where

go- gg2,

(go),, = 3 .(37)



Using the PY3 theory, 18 Attard and Stell 1 5 calculated go numerically over a
wide range of fluid densities. We recently discovered 3 that their numerical
results are accurately approximated by the simple analytical expression

4 - 7TI + 71I2 - 2,,3
go = -4( -2n3  (38)

Using Eq. (37) and Eq. (38), the fluid density at the critical point of the
transition is calculated to be pco 3 = 0.8409.3 This estimate of the minimum
fluid density necessary for a phase transition to occur at the fluid-solid
interface is much larger than that predicted using only the pair correlation
function and the Kirkwood superposition approximation. 1 The inclusion of
triplet correlations is thus important for studying adsorption in this case of the
model.
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